ЛАБОРАТОРНАЯ РАБОТА 4

Решение и геометрическая интерпретация игровых моделей размера 2 x 2, 2 x n, m x 2

В решении игр используется следующая <u>теорема</u>: если один из игроков применяет свою оптимальную смешанную стратегию, то его выигрыш равен цене игры v вне зависимости от того, с какими частотами будет применять второй игрок стратегии, вошедшие в оптимальную.

Решение игры начинается с исключения заведомо невыгодных и дублирующих стратегий, т.е. исходную матрицу можно упростить, если исключить доминирующие столбцы, т.е. все элементы которых больше остальных и оставить доминирующие строки.

После этого, упрощенную матрицу проверяют на наличие седловой точки, что позволяет сразу определить решение и цену игры.

Если седловой точки нет, то переходят к определению оптимальных смешанных стратегий.

Пример 1. Исследовать и решить игру, заданную матрицей $\begin{pmatrix} -1 & 2 \\ 3 & 1 \end{pmatrix}$.

Решение.

1) Проверим наличие седловой точки:

$$\begin{vmatrix}
-1 & 2 \\
3 & 1
\end{vmatrix} - 1 \quad \alpha = 1$$

$$3 \quad 2$$

$$\beta = 2$$

 $\alpha \neq \beta$, седловойточкинет, причем $1 \leq v \leq 2$, .

2) Найдем оптимальные смешанные стратегии. Пусть для игрока A стратегия задается вектором $P = (p_1, p_2)$ и цена игры ν .

Тогда, на основании теоремы, при применении игроком B чистой стратегии B_1 или B_2 игрок A получит средний выигрыш, равный цене игры, т.е.

$$\begin{cases} -1 \cdot p_{_1} + 3 \cdot p_{_2} = \nu & (при \ B_{_1}) \\ 2 \cdot p_{_1} + p_{_2} = \nu & (при \ B_{_2}) \\ p_{_1} + p_{_2} = 1 \end{cases}$$

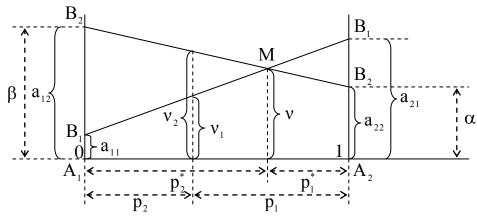
следовательно,
$$p_1 = \frac{2}{5}$$
, $p_2 = \frac{3}{5}$, $v = \frac{7}{5}$.

Аналогично, для игрока В, причем цена игры уже найдена, значит можно решить всего два уравнения

$$\begin{cases} -\,q_{_1} + 2 \cdot q_{_2} = \frac{7}{5} & \text{(при } A_{_1}\text{)} \\ q_{_1} + q_{_2} = 1 & \text{ откуда } q_{_1} = \frac{1}{5}, q_{_2} = \frac{4}{5} \,. \\ \text{Ответ: } P^* = \left(\frac{2}{5}, \frac{3}{5}\right), Q^* = \left(\frac{1}{5}, \frac{4}{5}\right), v = \frac{7}{5} \,. \end{cases}$$

Для геометрической интерпретации игры построим следующий график: в системе координат XOY отложим по оси OX отрезок A_1A_2 единичной длины, каждой точке $\overset{-}{x}$ которого будет отвечать некоторая смешанная стратегия

$$p = (p_1, p_2) = (p_1, 1 - p_1)$$



Так, точке A_1 , для которой $p_2=0, p_1=1$, отвечает стратегия A_1 , точке A_2 , для которой $p_1=0, p_2=1$ - стратегия A_2 .

При применении стратегии A_1 выигрыш равен a_{11} , если второй игрок применяет B_1 , и a_{12} , если второй игрок применяет B_2 . Следовательно, получим две точки B_1 и B_2 .

Соответственно, при применении стратегии A_2 выигрыш может быть a_{21} (при B_1) или a_{22} (при B_2) (они показаны двумя точками на перпендикуляре, восстановленном в точке A_2).

Средний выигрыш v_1 при любом сочетании стратегий A_1 и A_2 (с вероятностью p_1 и p_2) и стратегии B_1 второго игрока равен $v_1 = p_1 a_{11} + p_2 a_{21}$, и геометрически определяется ординатой, восстановленной в точке p до пересечения с отрезком $p_1 p_2$. Аналогично, средний выигрыш при применении стратегии p_2 будет определяться ординатами точек, лежащих на отрезке $p_2 p_2$.

Ординаты точек, лежащих на ломаной В₁МВ, характеризуют минимальный выигрыш игрока А при использовании любой смешанной стратегии р на участке В, М против стратегии В,..

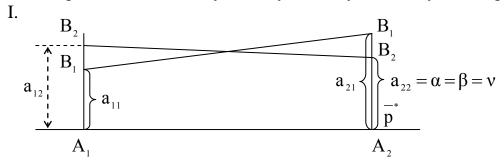
Следуя принципу максимина, получим, что оптимальное решение определяет точку М, в которой этот минимальный выигрыш достигает максимума. Ей отвечает на оси абсцисс точка $p^* = (p_1^*, p_2^*)$, а ее ордината равна цене игры v.

По цене игры находится оптимальная стратегия для игрока В, решением системы линейных уравнений:

$$\begin{cases} q_1^* a_{11} + q_2^* a_{12} = \nu & (при A_1) \\ q_1^* + q_2^* = 1 \end{cases}$$

На этом чертеже можно показать нижнюю α и верхнюю β цену игры.

Если матрица имеет седловую точку, то получим следующие графики:



Решением игры является чистая стратегия A_2 (для $B-B_2$), т.е. $P^*=(0,1)$ и $Q^*=(0,1)$. II.

$$\mathbf{a}_{12} \left\{ \mathbf{B}_{1} \right\} \mathbf{a}_{11} \qquad \mathbf{a}_{21} = \mathbf{v} \left\{ \mathbf{B}_{1} \right\} \mathbf{a}_{12}$$

Решение игры соответствует т. B_1 и задается векторами $P^*=(0,1)$ и $Q^*=(1,0)$. Пример 2. Решить и дать геометрическую интерпретацию игры, заданной

Решение:

1) Исследуем игру на седловую точку

2) Составляем систему уравнений

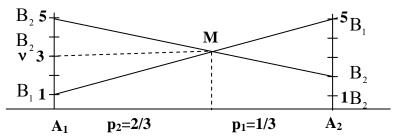
$$\begin{cases} p_1 + 4p_2 = v & (\pi\pi p B_1) \\ 5p_1 + 2p_2 = v & (\pi\pi p B_2) \\ p_1 + p_2 = 1 \end{cases}$$

Имеем
$$p_1 = \frac{1}{3}$$
, $p_2 = \frac{3}{3}$, $v = 3$, т.е. $P^* = \left(\frac{1}{3}, \frac{2}{3}\right)$

Для II игрока:

$$\begin{cases} q_1 + 5q_2 = 3 \\ q_1 + q_2 = 1 \end{cases}, \ q_1 = \frac{1}{2}, q_2 = \frac{1}{2}, Q^* = \left(\frac{1}{2}, \frac{1}{2}\right)$$

3) Строим график



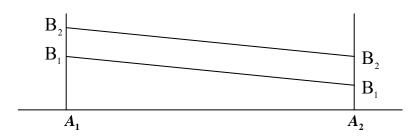
Пример 3. Решить и дать геометрическую интерпретацию игры $\begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix}$.

Решение:

Игра имеет седловую точку.

2) Решение игры: $P^* = (1,0)$ и $Q^* = (1,0)$

3)



из графика видно, что стратегия B_2 заведомо невыгодна и A_1 лучше A_2 . Пример 4. Найти графики решения и цену игры с матрицей (2x4)

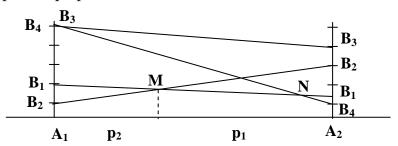
$$\begin{pmatrix} 2 & 1 & 5 & 3 \\ 1 & 3 & 4 & \frac{1}{2} \end{pmatrix}$$

Решение.

1) Исследуем матрицу на наличие седловой точки:

$$\frac{\begin{pmatrix} 2 & 1 & 5 & 3 \\ 1 & 3 & 4 & \frac{1}{2} \end{pmatrix} \frac{1}{2}}{2 & 3 & 5 & 3} \quad \alpha = 1, \, \alpha \neq \beta, \, 1 \leq \nu \leq 2 \,, \, \text{седловой точки нет.}$$

2) Строим график



Ломаная B₂MNB₄ даёт нижнюю границу выигрыша, находим максимальную точку - M, в которой пересекаются чистые стратегии B_2 и B_1 и найдем координаты точки M как пересечение 2-х прямых B_1B_1 и B_2B_2 :

$$\begin{cases} 2p_1 + p_2 = \nu & \text{(по I столбцу) при B}_1 \\ p_1 + 3p_2 = \nu & \text{(по II столбцу) при B}_2 \\ p_1 + p_2 = 1 \end{cases}$$

Имеем
$$p_1 = \frac{2}{3}$$
, $p_2 = \frac{1}{3}$, $v = \frac{5}{3}$

Для II игрока:

ДЛЯ П ИГРОКа:
$$\begin{cases} 2q_1 + q_2 = 5/3 & (\textit{no I cmpoke}) \ \textit{npu } A_1 \\ q_1 + q_2 = 1 \end{cases}$$

$$q_1 = \frac{2}{3}, q_2 = \frac{1}{3}$$
, т.к. B_3 и B_4 не выгодно использовать, значит q_3 =0, q_4 =0.

Otbet: $P^* = (2/3, 1/3), Q^* = (2/3, 1/3, 0, 0), v = 5/3.$

Пример 5.

Сделать тоже для игры с матрицей (4х2).

$$\begin{pmatrix}
2 & 5 \\
7 & 1 \\
3 & 7 \\
4 & 6
\end{pmatrix}$$

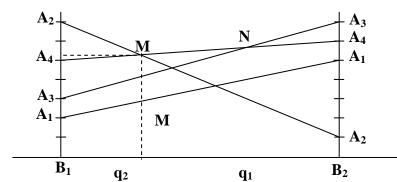
Решение

$$\begin{pmatrix} 2 & 5 \\ 7 & 1 \\ 3 & 7 \\ 4 & 6 \end{pmatrix}$$
 2 $\alpha \neq \beta, \ 4 \leq v \leq 7$ седловой точки нет

1) 7 7

$$\beta = 7$$

2)



Ломаная A_2MNA_3 даёт верхнюю границу проигрыша, находим максимальную точку — M, в которой пересекаются чистые стратегии A_2 и A_4 и найдем координаты точки M :

$$\begin{cases} 7q_1 + q_2 = \nu & \text{(по II строке) при } A_2 \\ 4q_1 + 6q_2 = \nu & \text{(по IV строке) при } A_4 \\ q_1 + q_2 = 1 \end{cases}$$

Имеем
$$q_1 = \frac{5}{8}$$
, $q_2 = \frac{3}{8}$, $\nu = \frac{19}{4}$

Для I игрока по элементам a_{21} и a_{41} строим систему:

$$\begin{cases} 7p_2 + 4p_4 = 19/4 \\ p_2 + p_4 = 1 \end{cases} \quad p_2 = \frac{1}{4}, p_4 = \frac{3}{4},$$

Otbet:
$$P^* = (0,1/4,0,3/4), Q^* = (5/8,3/8), v=19/4.$$

Задания: а) Решить графическим методом матричную игру размером 2*3,

б) Решить графическим методом матричную игру размером 3*2.

1) a)
$$\begin{pmatrix} 14 & 13 & 20 \\ 17 & 19 & 12 \end{pmatrix}$$
 6) $\begin{pmatrix} 16 & 17 \\ 13 & 19 \\ 20 & 11 \end{pmatrix}$ 2) a) $\begin{pmatrix} 4 & 2 & 11 \\ 7 & 9 & 4 \end{pmatrix}$ 6) $\begin{pmatrix} 4 & 7 \\ 3 & 9 \\ 11 & 2 \end{pmatrix}$ 3) a) $\begin{pmatrix} 7 & 5 & 11 \\ 9 & 10 & 2 \end{pmatrix}$ 6) $\begin{pmatrix} 6 & 9 \\ 5 & 10 \\ 12 & 4 \end{pmatrix}$ 4) a) $\begin{pmatrix} 4 & 2 & 10 \\ 7 & 11 & 3 \end{pmatrix}$ 6) $\begin{pmatrix} 4 & 7 \\ 3 & 9 \\ 10 & 3 \end{pmatrix}$

5) a) $\begin{pmatrix} 3 & 1 & 8 \\ 6 & 7 & 4 \end{pmatrix}$ 6) $\begin{pmatrix} 3 & 6 \\ 2 & 7 \\ 9 & 4 \end{pmatrix}$	6) a) $\begin{pmatrix} 7 & 4 & 9 \\ 10 & 11 & 7 \end{pmatrix}$ 6) $\begin{pmatrix} 7 & 10 \\ 6 & 11 \\ 9 & 8 \end{pmatrix}$
7) a) $\begin{pmatrix} 3 & 8 & 9 \\ 6 & 7 & 4 \end{pmatrix}$ 6) $\begin{pmatrix} 3 & 6 \\ 8 & 2 \\ 4 & 5 \end{pmatrix}$	8) a) $\begin{pmatrix} 5 & 4 & 10 \\ 6 & 8 & 1 \end{pmatrix}$ 6) $\begin{pmatrix} 5 & 6 \\ 4 & 7 \\ 10 & 3 \end{pmatrix}$
9) a) $\begin{pmatrix} 17 & 19 & 12 \\ 14 & 13 & 20 \end{pmatrix}$ 6) $\begin{pmatrix} 17 & 14 \\ 18 & 13 \\ 12 & 19 \end{pmatrix}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
11) a) $\begin{pmatrix} 2 & 5 & 3 \\ 6 & 3 & 4 \end{pmatrix}$ 6) $\begin{pmatrix} 2 & 6 \\ 9 & 7 \\ 5 & 2 \end{pmatrix}$	12) a) $\begin{pmatrix} 7 & 6 & 9 \\ 9 & 10 & 5 \end{pmatrix}$ 6) $\begin{pmatrix} 7 & 10 \\ 6 & 11 \\ 9 & 8 \end{pmatrix}$
13) a) $\begin{pmatrix} 4 & 3 & 10 \\ 7 & 8 & 3 \end{pmatrix}$ 6) $\begin{pmatrix} 4 & 7 \\ 1 & 8 \\ 10 & 2 \end{pmatrix}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{vmatrix} 16 & a & 2 & 4 & 7 \\ 10 & 7 & 4 \end{vmatrix} 6 \begin{pmatrix} 2 & 9 \\ 4 & 7 \\ 7 & 5 \end{pmatrix} $
17) a) $\begin{pmatrix} 10 & 7 & 5 \\ 2 & 4 & 11 \end{pmatrix}$ 6) $\begin{pmatrix} 9 & 2 \\ 7 & 3 \\ 5 & 11 \end{pmatrix}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28) a) $\begin{pmatrix} 4 & 9 & 5 \\ 8 & 7 & 3 \end{pmatrix}$ 6) $\begin{pmatrix} 5 & 9 \\ 8 & 4 \\ 5 & 2 \end{pmatrix}$
29) a) $\begin{pmatrix} 17 & 19 & 10 \\ 15 & 13 & 20 \end{pmatrix}$ $\stackrel{6}{\circ}$ $\begin{pmatrix} 17 & 14 \\ 18 & 13 \\ 10 & 22 \end{pmatrix}$	30) a) $\begin{pmatrix} 4 & 8 & 5 \\ 5 & 3 & 1 \end{pmatrix}$ 6) $\begin{pmatrix} 3 & 4 \\ 12 & 3 \\ 5 & 1 \end{pmatrix}$